База курсовых работ, рефератов, научных работ! Otryvnoy.ru Рефераты, курсовые, дипломные работы

Применение квадратурной формулы Чебышева для вычисления определенного интеграла

Применение квадратурной формулы Чебышева для вычисления определенного интеграла

Применение квадратурной формулы Чебышева для вычисления определенного интеграла

Введение

Данная задача заключается в решении определенного интеграла по квадратурной формуле Чебышева. Как известно, вычисление определенного интеграла сводится к вычислению площади криволинейной трапеции, ограниченной кривыми x = 0, y = a, y = b и y = f(x).

При вычислении определенного интеграла можно воспользоваться известной всем, формуле Ньютона – Лейбница, при условии f(x) непрерывна на отрезке [a, b], а также определена ее первообразная F(x). Но во многих случаях первообразная получается очень сложной для вычисления, да и функция часто задается таблично. Поэтому большое значение приобретает приближенное и в первую очередь численное интегрирование, задача которого заключается в нахождении приближенного значения интеграла по заданным или вычисленным значениям подынтегральной функции f(x) в некоторых точках (узлах) отрезка [a, b].

Механическая квадратура — численное значение однократного интеграла, и формулы численного интегрирования соответственно называют квадратурными.

Меняя подынтегральную функцию каким-либо интерполяционным многочленом, получаем квадратурные формулы, где x k — выбранные узлы интерполяции; A k — коэффициенты, зависящие только от выбора узлов, но не от вида функции (k = 0, 1, 2,........,n); R — остаточный член, или погрешность квадратурной формулы, отбросив который получим погрешность усечения. Далее, при расчете к погрешности усечения добавляются другие погрешности округления.

Разбив отрезок интегрирования [a, b] на n равных частей получим следующее: x i = x o + i .. h; (i = 0, 1, 2,......,n) x o = a; x n = b; h= (b-a)/n. Вычислим подынтегральную функцию в полученных узлах: y i = f(x i); (i = 0, 1, 2,......,n).

Для выведения формул численного интегрирования воспользуемся интерполяционным полиномом Лагранжа.

Пусть для функции y = f(x) известны в n + 1 точках X0, X1, X2, Xn промежутка [a,b] соответствующие определения f(xi)=yi (i=0,1,2..n). По заданным значениям Yi строим полином Лагранжа, заменяя f(x) полиномом Ln(x), где Rn(f) — ошибка квадратурной формулы. Воспользовавшись выражением для Ln(x), получим приближенную квадратурную формулу.

Однако заметим, следующее: коэффициенты Ai при данном расположении узлов не зависит от выбора функции f(x); для полинома степени n последняя формула точная.

Считая, что y = xK (k = 0, 1, 2..,n), получим линейную систему из n + 1 уравнений, где (k = 0, 1,..,n), из которой можно определить коэффициенты А0, А1,..,АN. Определитель системы есть определитель Вандермонда/

Но также необходимо заметить, что при применении данного метода фактически построение полинома Лагранжа Ln(x) является излишним. Простой метод подсчета погрешности квадратурных формул разработан С. М. Никольским.

Применяя метод трапеций и средних прямоугольников, интеграл будет численно равняться сумме площадей прямоугольных трапеций, где основание трапеции какая-либо малая величина (точность), и сумме площадей прямоугольников, где основание прямоугольника какая-либо малая величина (точность), а высота определяется по точке пересечения верхнего основания прямоугольника, график функции должен пересекать в середине.

Определим общую формулу Симпсона (параболическая формула) по следующим условиям: пусть n = 2m есть четное число и yi = f(xi) (i = 0, 1, 2...n) - значения функции y = f(x) для равноотстоящих точек а = x0, x1, ... ,xn=b с шагом h. Применив формулу Симпсона к каждому удвоенному промежутку [x0,x2], [x2,x4] ... [x2m-2,x2m] длины 2h и введя обозначения s 1 =y 1 +y 2 + ... +y 2m-1 s 2 =y 2 +y 4 + ... +y 2m получим обобщенную формулу Симпсона и остаточный член формулы Симпсона в общем виде, где x k I (x 2к-2 ,x 2к).

Рассмотрим квадратурную формулу Чебышева: пусть дана функция f(x) в виде многочлена f(x)=a o +a 1 x+...+a n x n. Проинтегрировав, преобразовав и подставив значения многочлена в узлах:

f(x 1)=a 0 +a 1 x 1 +a 2 x 12 +a 3 x 13 +...+a n x 1n

f(x 2)=a 0 +a 1 x 2 +a 2 x 22 +a 3 x 23 +...+a n x 2n

f(x 3)=a 0 +a 1 x 3 +a 2 x 32 +a 3 x 33 +...+a n x 3n

f(x n)=a 0 +a 1 x n +a 2 x n2 +a 3 x n3 +...+a n x nn

получим формулу Чебышева.

Значения х1,х2,..,хn для различных n приведены ниже в таблице:

n



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена