База курсовых работ, рефератов, научных работ! Otryvnoy.ru Рефераты, курсовые, дипломные работы

Комбинаторные условия фасетности опорных неравенств

Комбинаторные условия фасетности опорных неравенств

Комбинаторные условия фасетности опорных неравенств

Р.Ю. Симанчев, Омский государственный университет, кафедра математического моделирования

Пусть E- конечное множество, H- некоторое семейство его подмножеств. Мы будем рассматривать комбинаторно полные семейства, то есть семейства H, удовлетворяющие следующим аксиомам:

1) для любого eE найдутся такие H1H и H2H, что eH1H2;

2) для любых e1, e2E найдется такой HH, что e1H и e2H.

Сопоставим множеству E E-мерное евклидово пространство RE посредством взаимнооднозначного соответствия между E и множеством координатных осей пространства RE. Иными словами, RE можно мыслить как пространство вектор-столбцов, координаты которых индексированы элементами множества E. Для каждого R E определим его вектор инциденций xRRE как вектор с компонентами xeR = 1 при eR, xeR=0 при eR. Таким образом, множеству всех подмножеств множества E ставится во взаимнооднозначное соответствие множество всех вершин единичного куба в RE. На основании этого соответствия в дальнейшем там, где это не вызовет недоразумений, (0,1)-вектор xRE будем одновременно понимать как подмножество множества E.

Нас будет интересовать следующий многогранник, ассоциированный с семейством H,

PH = conv H H .

Перечислим некоторые очевидные свойства многогранника PH.

1) Каждая вершина многогранника PH является (0,1)-вектором. 2) Вершины и только они соответствуют множествам семейства H. 3) Многогранник PH не имеет целочисленных точек, отличных от вершин.

Пусть aRE, a0R. Линейное неравенство aTxa0 называется опорным к многограннику P(H), если aTxa0 для любого xP(H). Всякое опорное неравенство порождает грань многогранника (возможно несобственную). Максимальные по включению грани называются фасетами, а порождающие их опорные неравенства, соответственно, - фасетными. Принципиальная роль фасетных неравенств обуславливается, во-первых, тем, что они присутствуют в любой линейной системе, описывающей многогранник, во-вторых, эффективность их использования в качестве отсечений при решении соответствующих экстремальных комбинаторных задач (см., например, [3]).

В настоящей работе получены достаточные условия фасетности опорного неравенства, имеющие комбинаторную природу.

Через aff P(H) обозначим аффинную оболочку многогранника P(H). Как известно, существуют такие матрица A и вектор-столбец , что

aff P(H)= ATx =  .

Далее везде, не ограничивая общности, будем полагать, что матрица A в линейном описании аффинной оболочки имеет полный ранг.

Каждая строка матрицы A соответствует ровно одному элементу eE и наоборот. Поэтому множество строк матрицы A будем обозначать через E. Множество столбцов обозначим буквой V. Ясно, что rankA=VE. Положим V=n. Согласно введенным обозначениям, для коэффициента матрицы A, находящегося в строке eE и столбце uV, будем использовать запись aeu. Обозначим через Ve множество столбцов матрицы A, имеющих в строке e ненулевой элемент. Для S E положим VS =eSVe. Если cRE, то через (cA) (соответственно, (Ac)) обозначим матрицу, полученную приписыванием к матрице A слева (соответственно, справа) столбца c, а через D(c,E) подматрицу матрицы (cA), образованную строками E~E.

Пусть cTx  c0 - опорное к P(H) неравенство. Нам понадобятся следующие определения.

Непустое множество SE будем называть cH-множеством, если существуют такие H1,H2H, что 1) S=(H1H2)(H2H1)   и  2) cTxH1 = cTxH2 = c0;

Будем говорить, что элемент e0E является cH-следствием некоторого множества E~E, если существует такое упорядоченное множество e1, e2, ... ,et = e0, что для любого i{1,2,,t} элемент ei принадлежит некоторому cH-множеству, лежащему в E~{e1,e2,,ei} .

Лемма. Пусть affP(H)=xRERE и SE - cH-множество. Тогда для каждого uVS имеет место соотношение eSH2 aeu = eSH1 aeu, где H1,H2H - из определения cH-множества.

Доказательство. Пусть aTx=u - соответствующее уравнение из системы, определяющей аффинную оболочку многогранника P(H). Ясно, что оно справедливо и для векторов xH1 и xH2. Заметим также, что SH2 = H1H2 и SH1=H2H1. Теперь 0 = aTxH1-aTxH2 = aT(xH1-xH2) = aT(xH1H2 - xH2H1) = aTxSH2 - aTxSH1 =eSH2 aeu = eSH1 aeu. Теорема. Пусть cTx c0 - опорное к P(H) неравенство, F=xP(H) . Для того, чтобы грань F являлась фасетой многогранника P(H), достаточно существования такого E~E, что 1) E~=n+1; 2) всякое eE E~ является cH-следствием множества E~; 3) матрица D(c,E~) имеет полный ранг.

Доказательство. Пусть bTx b0 - опорное к P(H) неравенство, удовлетворяющее условию

cTx = c0  bTx = b0 .



Наш опрос
Как Вы оцениваете работу нашего сайта?
Отлично
Не помог
Реклама
 
Мнение авторов может не совпадать с мнением редакции сайта
Перепечатка материалов без ссылки на наш сайт запрещена